Semester-V/ Extra Credit	Artificial Intelligence	Course Code:VAX:1B
Value Added Course I	(Theory and Practical)	
Instruction Hours:	Credits: 2	Exam Hours: -
Theory – 40 Marks	Practical: 60 Marks	Total Marks: 100

Course Objectives:

- Study the concepts of Artificial Intelligence.
- Learn the methods of solving problems using Artificial Intelligence.
- Learn the knowledge representation techniques, reasoning techniques and planning
- Demonstrate knowledge and understanding of the engineering and management principles

	• Introduce the concepts of Expert Systems and machine learning.	
UNIT I:		Marks: 40
	Introduction to Artificial Intelligence:	
	☐ Introduction to AI	
	☐ Intelligent Agents	
	☐ Search Methods and Knowledge Representation	
	☐ Use Cases of Artificial Intelligence	
	□ Role of Machine Learning Engineer□ Machine Learning Tools & Packages	
	UNIT II Python Data Structures	
	☐ Python Programming Fundamentals	
	☐ Conditions and Branching	
	□ Loops	
	☐ Python Packages	
	☐ Working with NUMPY	
	☐ Working with Pandas	
	☐ Introduction to Data Visualization	
	☐ Introduction to Matplotlib and Seaborn	
	☐ Basic Plotting with Matplotlib and Seaborn	

UNIT III

Data Wrangling Techniques

Introduction to Data pre-processing
Importing the Dataset
Handling Missing data
Working with Categorical Data
Splitting the data into Train and Test set Feature Scaling

Marks:60

List of Practicals:

- 1. Write a program to implement DFS
- 2. Write a program to implement BFS
- 3. Write a Program to find the solution for travelling salesman Problem
- 4. Write a program to implement Simulated Annealing Algorithm
- 5. Write a program to Illustrate Python Functions
- 6. Write a program to implement 8 puzzle problem
- 7. Write a program to implement Towers of Hanoi problem
- 8. Write a program to implement Water Jug Problem
- 9. Write a program to implement Knap sack Problem
- 10. Write a Program to Implement Alpha-Beta Pruning using Python.

Course Outcomes:

Upon completing the course, students will be able to:

- Familiar with Artificial Intelligence, its foundation and principles.
- Identify appropriate AI methods to solve a given problem.
- Examine the useful search techniques, knowledge representation techniques, Inference methods; learn their advantages, disadvantages and comparison.
- Understand important concepts like Expert Systems, AI applications.
- Learn Prolog Programming to program intelligent systems.